Efficient frequency calculations in QM/MM using the Mobile Block Hessian method
نویسندگان
چکیده
Normal mode analysis (NMA) is a well-known technique which estimates the intrinsic frequencies of chemical systems by assuming a harmonic shape for the potential energy surface. Despite its simplicity, it is still a popular approach to predict vibrational IR and Raman spectra, to identify chemical groups [1], or to study the large motions involved in conformational changes of biomolecules [2]. The method is based on the diagonalization of the Hessian matrix, which contains the second derivatives of the potential energy with respect to the 3N nuclear coordinates. In extended QM/MM systems, however, its calculation, storage and diagonalization is an expensive computational task. Even in the case of a small QM region, the numerous derivatives of the QM/MM interaction terms still form a bottleneck in the frequency calculation: each MM atom displacement atom affects the charge distribution in the QM region, resulting in a large number of coupled perturbation self-consistent field (CPSCF) equations [3].
منابع مشابه
Efficient Calculation of QM/MM Frequencies with the Mobile Block Hessian.
The calculation of the analytical second derivative matrix (Hessian) is the bottleneck for vibrational analysis in QM/MM systems when an electrostatic embedding scheme is employed. Even with a small number of QM atoms in the system, the presence of MM atoms increases the computational cost dramatically: the long-range Coulomb interactions require that additional coupled perturbed self-consisten...
متن کاملMultiple Environment Single System Quantum Mechanical/Molecular Mechanical (MESS-QM/MM) Calculations. 1. Estimation of Polarization Energies
In combined quantum mechanical/molecular mechanical (QM/MM) free energy calculations, it is often advantageous to have a frozen geometry for the quantum mechanical (QM) region. For such multiple-environment single-system (MESS) cases, two schemes are proposed here for estimating the polarization energy: the first scheme, termed MESS-E, involves a Roothaan step extrapolation of the self-consiste...
متن کاملMulticonfiguration Molecular Mechanics Based on Combined Quantum Mechanical and Molecular Mechanical Calculations.
The multiconfiguration molecular mechanics (MCMM) method is a general algorithm for generating potential energy surfaces for chemical reactions by fitting high-level electronic structure data with the help of molecular mechanical (MM) potentials. It was previously developed as an extension of standard MM to reactive systems by inclusion of multidimensional resonance interactions between MM conf...
متن کاملQuantum Mechanics-Molecular Mechanics Model Study of some Antibiotics and Vitamins in Gas Phases: Investigation of Energy and NMR Chemical Shift
The combination of Quantum Mechanics (QM) and Molecular Mechanics (MM) methods hasbecome alternative tool for many applications that pure QM and MM could not be suitable.The QM/MM method has been used for different type of problems, for example: structuralbiology, surface phenomena, and liquid phase. In this paper we have performed these methods forsome antibiotics and vitamins and then we comp...
متن کاملAn Efficient Linear-Scaling Ewald Method for Long-Range Electrostatic Interactions in Combined QM/MM Calculations.
A method is presented for the efficient evaluation of long-range electrostatic forces in combined quantum mechanical and molecular mechanical (QM/MM) calculations of periodic systems. The QM/MM-Ewald method is a linear-scaling electrostatic method that utilizes the particle mesh Ewald algorithm for calculation of point charge interactions of molecular mechanical atoms and a real-space multipola...
متن کامل